Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{\left(2\sqrt{3}-\sqrt{11}\right)\left(2\sqrt{3}+\sqrt{11}\right)}
Rationalize the denominator of \frac{3\sqrt{2}}{2\sqrt{3}-\sqrt{11}} by multiplying numerator and denominator by 2\sqrt{3}+\sqrt{11}.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(2\sqrt{3}-\sqrt{11}\right)\left(2\sqrt{3}+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{4\times 3-\left(\sqrt{11}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{12-\left(\sqrt{11}\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{12-11}
The square of \sqrt{11} is 11.
\frac{3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)}{1}
Subtract 11 from 12 to get 1.
3\sqrt{2}\left(2\sqrt{3}+\sqrt{11}\right)
Anything divided by one gives itself.
6\sqrt{3}\sqrt{2}+3\sqrt{2}\sqrt{11}
Use the distributive property to multiply 3\sqrt{2} by 2\sqrt{3}+\sqrt{11}.
6\sqrt{6}+3\sqrt{2}\sqrt{11}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
6\sqrt{6}+3\sqrt{22}
To multiply \sqrt{2} and \sqrt{11}, multiply the numbers under the square root.