Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{3}.
\frac{3\sqrt{2}\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{2}\left(\sqrt{6}+\sqrt{3}\right)}{6-3}
Square \sqrt{6}. Square \sqrt{3}.
\frac{3\sqrt{2}\left(\sqrt{6}+\sqrt{3}\right)}{3}
Subtract 3 from 6 to get 3.
\frac{3\sqrt{2}\sqrt{6}+3\sqrt{2}\sqrt{3}}{3}
Use the distributive property to multiply 3\sqrt{2} by \sqrt{6}+\sqrt{3}.
\frac{3\sqrt{2}\sqrt{2}\sqrt{3}+3\sqrt{2}\sqrt{3}}{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{3\times 2\sqrt{3}+3\sqrt{2}\sqrt{3}}{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{3}+3\sqrt{2}\sqrt{3}}{3}
Multiply 3 and 2 to get 6.
\frac{6\sqrt{3}+3\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{3}+\sqrt{6}
Divide each term of 6\sqrt{3}+3\sqrt{6} by 3 to get 2\sqrt{3}+\sqrt{6}.