Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{2}+4\right)\left(3\sqrt{2}+4\right)}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}
Rationalize the denominator of \frac{3\sqrt{2}+4}{3\sqrt{2}-4} by multiplying numerator and denominator by 3\sqrt{2}+4.
\frac{\left(3\sqrt{2}+4\right)\left(3\sqrt{2}+4\right)}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Consider \left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}+4\right)^{2}}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Multiply 3\sqrt{2}+4 and 3\sqrt{2}+4 to get \left(3\sqrt{2}+4\right)^{2}.
\frac{9\left(\sqrt{2}\right)^{2}+24\sqrt{2}+16}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+4\right)^{2}.
\frac{9\times 2+24\sqrt{2}+16}{\left(3\sqrt{2}\right)^{2}-4^{2}}
The square of \sqrt{2} is 2.
\frac{18+24\sqrt{2}+16}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Multiply 9 and 2 to get 18.
\frac{34+24\sqrt{2}}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Add 18 and 16 to get 34.
\frac{34+24\sqrt{2}}{3^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{34+24\sqrt{2}}{9\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{34+24\sqrt{2}}{9\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{34+24\sqrt{2}}{18-4^{2}}
Multiply 9 and 2 to get 18.
\frac{34+24\sqrt{2}}{18-16}
Calculate 4 to the power of 2 and get 16.
\frac{34+24\sqrt{2}}{2}
Subtract 16 from 18 to get 2.
17+12\sqrt{2}
Divide each term of 34+24\sqrt{2} by 2 to get 17+12\sqrt{2}.