Solve for x
x=2
Graph
Share
Copied to clipboard
12\times 3x-60=360\left(\frac{x}{20}-\frac{1}{15}\right)
Multiply both sides of the equation by 60, the least common multiple of 5,20,15.
36x-60=360\left(\frac{x}{20}-\frac{1}{15}\right)
Multiply 12 and 3 to get 36.
36x-60=360\left(\frac{3x}{60}-\frac{4}{60}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 20 and 15 is 60. Multiply \frac{x}{20} times \frac{3}{3}. Multiply \frac{1}{15} times \frac{4}{4}.
36x-60=360\times \frac{3x-4}{60}
Since \frac{3x}{60} and \frac{4}{60} have the same denominator, subtract them by subtracting their numerators.
36x-60=6\left(3x-4\right)
Cancel out 60, the greatest common factor in 360 and 60.
36x-60=18x-24
Use the distributive property to multiply 6 by 3x-4.
36x-60-18x=-24
Subtract 18x from both sides.
18x-60=-24
Combine 36x and -18x to get 18x.
18x=-24+60
Add 60 to both sides.
18x=36
Add -24 and 60 to get 36.
x=\frac{36}{18}
Divide both sides by 18.
x=2
Divide 36 by 18 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}