Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\times \frac{1}{4}+\frac{1}{4}}{2\left(-\frac{1}{3}\right)^{2}-\frac{3}{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{3}{4}+\frac{1}{4}}{2\left(-\frac{1}{3}\right)^{2}-\frac{3}{2}}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
\frac{\frac{3+1}{4}}{2\left(-\frac{1}{3}\right)^{2}-\frac{3}{2}}
Since \frac{3}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{4}}{2\left(-\frac{1}{3}\right)^{2}-\frac{3}{2}}
Add 3 and 1 to get 4.
\frac{1}{2\left(-\frac{1}{3}\right)^{2}-\frac{3}{2}}
Divide 4 by 4 to get 1.
\frac{1}{2\times \frac{1}{9}-\frac{3}{2}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{\frac{2}{9}-\frac{3}{2}}
Multiply 2 and \frac{1}{9} to get \frac{2}{9}.
\frac{1}{\frac{4}{18}-\frac{27}{18}}
Least common multiple of 9 and 2 is 18. Convert \frac{2}{9} and \frac{3}{2} to fractions with denominator 18.
\frac{1}{\frac{4-27}{18}}
Since \frac{4}{18} and \frac{27}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{-\frac{23}{18}}
Subtract 27 from 4 to get -23.
1\left(-\frac{18}{23}\right)
Divide 1 by -\frac{23}{18} by multiplying 1 by the reciprocal of -\frac{23}{18}.
-\frac{18}{23}
Multiply 1 and -\frac{18}{23} to get -\frac{18}{23}.