Evaluate
\frac{x+5}{6\left(3x+2\right)}
Expand
\frac{x+5}{6\left(3x+2\right)}
Graph
Share
Copied to clipboard
\frac{\frac{3\left(x+2\right)}{2x+1}-1}{2\times \frac{x+2}{2x+1}+8}
Express 3\times \frac{x+2}{2x+1} as a single fraction.
\frac{\frac{3\left(x+2\right)}{2x+1}-\frac{2x+1}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2x+1}{2x+1}.
\frac{\frac{3\left(x+2\right)-\left(2x+1\right)}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Since \frac{3\left(x+2\right)}{2x+1} and \frac{2x+1}{2x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x+6-2x-1}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Do the multiplications in 3\left(x+2\right)-\left(2x+1\right).
\frac{\frac{x+5}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Combine like terms in 3x+6-2x-1.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)}{2x+1}+8}
Express 2\times \frac{x+2}{2x+1} as a single fraction.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)}{2x+1}+\frac{8\left(2x+1\right)}{2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{2x+1}{2x+1}.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)+8\left(2x+1\right)}{2x+1}}
Since \frac{2\left(x+2\right)}{2x+1} and \frac{8\left(2x+1\right)}{2x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{x+5}{2x+1}}{\frac{2x+4+16x+8}{2x+1}}
Do the multiplications in 2\left(x+2\right)+8\left(2x+1\right).
\frac{\frac{x+5}{2x+1}}{\frac{18x+12}{2x+1}}
Combine like terms in 2x+4+16x+8.
\frac{\left(x+5\right)\left(2x+1\right)}{\left(2x+1\right)\left(18x+12\right)}
Divide \frac{x+5}{2x+1} by \frac{18x+12}{2x+1} by multiplying \frac{x+5}{2x+1} by the reciprocal of \frac{18x+12}{2x+1}.
\frac{x+5}{18x+12}
Cancel out 2x+1 in both numerator and denominator.
\frac{\frac{3\left(x+2\right)}{2x+1}-1}{2\times \frac{x+2}{2x+1}+8}
Express 3\times \frac{x+2}{2x+1} as a single fraction.
\frac{\frac{3\left(x+2\right)}{2x+1}-\frac{2x+1}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2x+1}{2x+1}.
\frac{\frac{3\left(x+2\right)-\left(2x+1\right)}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Since \frac{3\left(x+2\right)}{2x+1} and \frac{2x+1}{2x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3x+6-2x-1}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Do the multiplications in 3\left(x+2\right)-\left(2x+1\right).
\frac{\frac{x+5}{2x+1}}{2\times \frac{x+2}{2x+1}+8}
Combine like terms in 3x+6-2x-1.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)}{2x+1}+8}
Express 2\times \frac{x+2}{2x+1} as a single fraction.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)}{2x+1}+\frac{8\left(2x+1\right)}{2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{2x+1}{2x+1}.
\frac{\frac{x+5}{2x+1}}{\frac{2\left(x+2\right)+8\left(2x+1\right)}{2x+1}}
Since \frac{2\left(x+2\right)}{2x+1} and \frac{8\left(2x+1\right)}{2x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{x+5}{2x+1}}{\frac{2x+4+16x+8}{2x+1}}
Do the multiplications in 2\left(x+2\right)+8\left(2x+1\right).
\frac{\frac{x+5}{2x+1}}{\frac{18x+12}{2x+1}}
Combine like terms in 2x+4+16x+8.
\frac{\left(x+5\right)\left(2x+1\right)}{\left(2x+1\right)\left(18x+12\right)}
Divide \frac{x+5}{2x+1} by \frac{18x+12}{2x+1} by multiplying \frac{x+5}{2x+1} by the reciprocal of \frac{18x+12}{2x+1}.
\frac{x+5}{18x+12}
Cancel out 2x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}