Verify
false
Share
Copied to clipboard
\frac{\frac{27}{2}}{\left(\frac{2}{3}\right)^{4}}=\frac{2}{7}
Calculate 3 to the power of 3 and get 27.
\frac{\frac{27}{2}}{\frac{16}{81}}=\frac{2}{7}
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{27}{2}\times \frac{81}{16}=\frac{2}{7}
Divide \frac{27}{2} by \frac{16}{81} by multiplying \frac{27}{2} by the reciprocal of \frac{16}{81}.
\frac{27\times 81}{2\times 16}=\frac{2}{7}
Multiply \frac{27}{2} times \frac{81}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{2187}{32}=\frac{2}{7}
Do the multiplications in the fraction \frac{27\times 81}{2\times 16}.
\frac{15309}{224}=\frac{64}{224}
Least common multiple of 32 and 7 is 224. Convert \frac{2187}{32} and \frac{2}{7} to fractions with denominator 224.
\text{false}
Compare \frac{15309}{224} and \frac{64}{224}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}