Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{2-i}{3+i}
Multiply both numerator and denominator of \frac{3+i}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{5+5i}{5}+\frac{2-i}{3+i}
Do the multiplications in \frac{\left(3+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
1+i+\frac{2-i}{3+i}
Divide 5+5i by 5 to get 1+i.
1+i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
1+i+\frac{5-5i}{10}
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
1+i+\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
\frac{3}{2}+\frac{1}{2}i
Add 1+i and \frac{1}{2}-\frac{1}{2}i to get \frac{3}{2}+\frac{1}{2}i.
Re(\frac{\left(3+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{2-i}{3+i})
Multiply both numerator and denominator of \frac{3+i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{5+5i}{5}+\frac{2-i}{3+i})
Do the multiplications in \frac{\left(3+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(1+i+\frac{2-i}{3+i})
Divide 5+5i by 5 to get 1+i.
Re(1+i+\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(1+i+\frac{5-5i}{10})
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(1+i+\left(\frac{1}{2}-\frac{1}{2}i\right))
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{3}{2}+\frac{1}{2}i)
Add 1+i and \frac{1}{2}-\frac{1}{2}i to get \frac{3}{2}+\frac{1}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}+\frac{1}{2}i is \frac{3}{2}.