Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+5i\right)\left(7-i\right)}{\left(7+i\right)\left(7-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-i.
\frac{\left(3+5i\right)\left(7-i\right)}{7^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+5i\right)\left(7-i\right)}{50}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)i^{2}}{50}
Multiply complex numbers 3+5i and 7-i like you multiply binomials.
\frac{3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)\left(-1\right)}{50}
By definition, i^{2} is -1.
\frac{21-3i+35i+5}{50}
Do the multiplications in 3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)\left(-1\right).
\frac{21+5+\left(-3+35\right)i}{50}
Combine the real and imaginary parts in 21-3i+35i+5.
\frac{26+32i}{50}
Do the additions in 21+5+\left(-3+35\right)i.
\frac{13}{25}+\frac{16}{25}i
Divide 26+32i by 50 to get \frac{13}{25}+\frac{16}{25}i.
Re(\frac{\left(3+5i\right)\left(7-i\right)}{\left(7+i\right)\left(7-i\right)})
Multiply both numerator and denominator of \frac{3+5i}{7+i} by the complex conjugate of the denominator, 7-i.
Re(\frac{\left(3+5i\right)\left(7-i\right)}{7^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+5i\right)\left(7-i\right)}{50})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)i^{2}}{50})
Multiply complex numbers 3+5i and 7-i like you multiply binomials.
Re(\frac{3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)\left(-1\right)}{50})
By definition, i^{2} is -1.
Re(\frac{21-3i+35i+5}{50})
Do the multiplications in 3\times 7+3\left(-i\right)+5i\times 7+5\left(-1\right)\left(-1\right).
Re(\frac{21+5+\left(-3+35\right)i}{50})
Combine the real and imaginary parts in 21-3i+35i+5.
Re(\frac{26+32i}{50})
Do the additions in 21+5+\left(-3+35\right)i.
Re(\frac{13}{25}+\frac{16}{25}i)
Divide 26+32i by 50 to get \frac{13}{25}+\frac{16}{25}i.
\frac{13}{25}
The real part of \frac{13}{25}+\frac{16}{25}i is \frac{13}{25}.