Solve for P
P=\frac{-41\sqrt{3}-9}{4}\approx -20.003520778
Share
Copied to clipboard
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{\left(2-2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}=P+9\sqrt{3}
Rationalize the denominator of \frac{3+2\sqrt{3}}{2-2\sqrt{3}} by multiplying numerator and denominator by 2+2\sqrt{3}.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{2^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Consider \left(2-2\sqrt{3}\right)\left(2+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{4-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{4-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{4-4\left(\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Calculate -2 to the power of 2 and get 4.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{4-4\times 3}=P+9\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{4-12}=P+9\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{\left(3+2\sqrt{3}\right)\left(2+2\sqrt{3}\right)}{-8}=P+9\sqrt{3}
Subtract 12 from 4 to get -8.
\frac{6+6\sqrt{3}+4\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{-8}=P+9\sqrt{3}
Apply the distributive property by multiplying each term of 3+2\sqrt{3} by each term of 2+2\sqrt{3}.
\frac{6+10\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{-8}=P+9\sqrt{3}
Combine 6\sqrt{3} and 4\sqrt{3} to get 10\sqrt{3}.
\frac{6+10\sqrt{3}+4\times 3}{-8}=P+9\sqrt{3}
The square of \sqrt{3} is 3.
\frac{6+10\sqrt{3}+12}{-8}=P+9\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{18+10\sqrt{3}}{-8}=P+9\sqrt{3}
Add 6 and 12 to get 18.
-\frac{9}{4}-\frac{5}{4}\sqrt{3}=P+9\sqrt{3}
Divide each term of 18+10\sqrt{3} by -8 to get -\frac{9}{4}-\frac{5}{4}\sqrt{3}.
P+9\sqrt{3}=-\frac{9}{4}-\frac{5}{4}\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
P=-\frac{9}{4}-\frac{5}{4}\sqrt{3}-9\sqrt{3}
Subtract 9\sqrt{3} from both sides.
P=-\frac{9}{4}-\frac{41}{4}\sqrt{3}
Combine -\frac{5}{4}\sqrt{3} and -9\sqrt{3} to get -\frac{41}{4}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}