Evaluate
\frac{\sqrt{6}c}{5}+\frac{3}{50}
Differentiate w.r.t. c
\frac{\sqrt{6}}{5} = 0.4898979485566356
Share
Copied to clipboard
\frac{\left(3+\sqrt{600}c\right)\times 6}{300}
Divide 3+\sqrt{600}c by \frac{300}{6} by multiplying 3+\sqrt{600}c by the reciprocal of \frac{300}{6}.
\frac{\left(3+10\sqrt{6}c\right)\times 6}{300}
Factor 600=10^{2}\times 6. Rewrite the square root of the product \sqrt{10^{2}\times 6} as the product of square roots \sqrt{10^{2}}\sqrt{6}. Take the square root of 10^{2}.
\left(3+10\sqrt{6}c\right)\times \frac{1}{50}
Divide \left(3+10\sqrt{6}c\right)\times 6 by 300 to get \left(3+10\sqrt{6}c\right)\times \frac{1}{50}.
3\times \frac{1}{50}+10\sqrt{6}c\times \frac{1}{50}
Use the distributive property to multiply 3+10\sqrt{6}c by \frac{1}{50}.
\frac{3}{50}+10\sqrt{6}c\times \frac{1}{50}
Multiply 3 and \frac{1}{50} to get \frac{3}{50}.
\frac{3}{50}+\frac{10}{50}\sqrt{6}c
Multiply 10 and \frac{1}{50} to get \frac{10}{50}.
\frac{3}{50}+\frac{1}{5}\sqrt{6}c
Reduce the fraction \frac{10}{50} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}