Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{2}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{3+\sqrt{2}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(3+\sqrt{2}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{2}\right)\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\frac{\left(3+\sqrt{2}\right)\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(3+\sqrt{2}\right)\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
6+3\sqrt{3}+2\sqrt{2}+\sqrt{2}\sqrt{3}
Apply the distributive property by multiplying each term of 3+\sqrt{2} by each term of 2+\sqrt{3}.
6+3\sqrt{3}+2\sqrt{2}+\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.