Evaluate
\frac{637}{18}\approx 35.388888889
Factor
\frac{7 ^ {2} \cdot 13}{2 \cdot 3 ^ {2}} = 35\frac{7}{18} = 35.388888888888886
Share
Copied to clipboard
\frac{\frac{28}{32}\times 35}{\frac{42}{14}\times 25}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Divide \frac{\frac{28}{32}}{\frac{42}{14}} by \frac{25}{35} by multiplying \frac{\frac{28}{32}}{\frac{42}{14}} by the reciprocal of \frac{25}{35}.
\frac{\frac{7}{8}\times 35}{\frac{42}{14}\times 25}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Reduce the fraction \frac{28}{32} to lowest terms by extracting and canceling out 4.
\frac{\frac{7\times 35}{8}}{\frac{42}{14}\times 25}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Express \frac{7}{8}\times 35 as a single fraction.
\frac{\frac{245}{8}}{\frac{42}{14}\times 25}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Multiply 7 and 35 to get 245.
\frac{\frac{245}{8}}{3\times 25}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Divide 42 by 14 to get 3.
\frac{\frac{245}{8}}{75}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Multiply 3 and 25 to get 75.
\frac{245}{8\times 75}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Express \frac{\frac{245}{8}}{75} as a single fraction.
\frac{245}{600}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Multiply 8 and 75 to get 600.
\frac{49}{120}\times \frac{40}{18}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Reduce the fraction \frac{245}{600} to lowest terms by extracting and canceling out 5.
\frac{49}{120}\times \frac{20}{9}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Reduce the fraction \frac{40}{18} to lowest terms by extracting and canceling out 2.
\frac{49\times 20}{120\times 9}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Multiply \frac{49}{120} times \frac{20}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{980}{1080}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Do the multiplications in the fraction \frac{49\times 20}{120\times 9}.
\frac{49}{54}\times \frac{24}{5}\times \frac{8\times 8+1}{8}
Reduce the fraction \frac{980}{1080} to lowest terms by extracting and canceling out 20.
\frac{49\times 24}{54\times 5}\times \frac{8\times 8+1}{8}
Multiply \frac{49}{54} times \frac{24}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1176}{270}\times \frac{8\times 8+1}{8}
Do the multiplications in the fraction \frac{49\times 24}{54\times 5}.
\frac{196}{45}\times \frac{8\times 8+1}{8}
Reduce the fraction \frac{1176}{270} to lowest terms by extracting and canceling out 6.
\frac{196}{45}\times \frac{64+1}{8}
Multiply 8 and 8 to get 64.
\frac{196}{45}\times \frac{65}{8}
Add 64 and 1 to get 65.
\frac{196\times 65}{45\times 8}
Multiply \frac{196}{45} times \frac{65}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{12740}{360}
Do the multiplications in the fraction \frac{196\times 65}{45\times 8}.
\frac{637}{18}
Reduce the fraction \frac{12740}{360} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}