Evaluate
\frac{274}{21}\approx 13.047619048
Factor
\frac{2 \cdot 137}{3 \cdot 7} = 13\frac{1}{21} = 13.047619047619047
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)274}\\\end{array}
Use the 1^{st} digit 2 from dividend 274
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)274}\\\end{array}
Since 2 is less than 21, use the next digit 7 from dividend 274 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)274}\\\end{array}
Use the 2^{nd} digit 7 from dividend 274
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)274}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}6\\\end{array}
Find closest multiple of 21 to 27. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 27 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)274}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}64\\\end{array}
Use the 3^{rd} digit 4 from dividend 274
\begin{array}{l}\phantom{21)}013\phantom{6}\\21\overline{)274}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}64\\\phantom{21)}\underline{\phantom{9}63\phantom{}}\\\phantom{21)99}1\\\end{array}
Find closest multiple of 21 to 64. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 64 to get reminder 1. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }1
Since 1 is less than 21, stop the division. The reminder is 1. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}