Evaluate
\frac{2650\sqrt{2}}{523}\approx 7.165709255
Share
Copied to clipboard
\frac{1.325}{\frac{0.523}{\sqrt{8}}}
Subtract 269.3 from 270.625 to get 1.325.
\frac{1.325}{\frac{0.523}{2\sqrt{2}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1.325}{\frac{0.523\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{0.523}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1.325}{\frac{0.523\sqrt{2}}{2\times 2}}
The square of \sqrt{2} is 2.
\frac{1.325}{\frac{0.523\sqrt{2}}{4}}
Multiply 2 and 2 to get 4.
\frac{1.325}{0.13075\sqrt{2}}
Divide 0.523\sqrt{2} by 4 to get 0.13075\sqrt{2}.
\frac{1.325\sqrt{2}}{0.13075\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1.325}{0.13075\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1.325\sqrt{2}}{0.13075\times 2}
The square of \sqrt{2} is 2.
\frac{1.325\sqrt{2}}{0.2615}
Multiply 0.13075 and 2 to get 0.2615.
\frac{2650}{523}\sqrt{2}
Divide 1.325\sqrt{2} by 0.2615 to get \frac{2650}{523}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}