Solve for x
x = \frac{\sqrt{78569} - 13}{70} \approx 3.818594618
x=\frac{-\sqrt{78569}-13}{70}\approx -4.190023189
Graph
Share
Copied to clipboard
35\times 27+35\times 5+7\times 2x=5\times 8x+2x\times 35x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of x,5x,7x.
945+175+7\times 2x=5\times 8x+2x\times 35x
Do the multiplications.
1120+7\times 2x=5\times 8x+2x\times 35x
Add 945 and 175 to get 1120.
1120+14x=5\times 8x+2x\times 35x
Multiply 7 and 2 to get 14.
1120+14x=5\times 8x+2x^{2}\times 35
Multiply x and x to get x^{2}.
1120+14x=40x+2x^{2}\times 35
Multiply 5 and 8 to get 40.
1120+14x=40x+70x^{2}
Multiply 2 and 35 to get 70.
1120+14x-40x=70x^{2}
Subtract 40x from both sides.
1120-26x=70x^{2}
Combine 14x and -40x to get -26x.
1120-26x-70x^{2}=0
Subtract 70x^{2} from both sides.
-70x^{2}-26x+1120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-70\right)\times 1120}}{2\left(-70\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -70 for a, -26 for b, and 1120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\left(-70\right)\times 1120}}{2\left(-70\right)}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676+280\times 1120}}{2\left(-70\right)}
Multiply -4 times -70.
x=\frac{-\left(-26\right)±\sqrt{676+313600}}{2\left(-70\right)}
Multiply 280 times 1120.
x=\frac{-\left(-26\right)±\sqrt{314276}}{2\left(-70\right)}
Add 676 to 313600.
x=\frac{-\left(-26\right)±2\sqrt{78569}}{2\left(-70\right)}
Take the square root of 314276.
x=\frac{26±2\sqrt{78569}}{2\left(-70\right)}
The opposite of -26 is 26.
x=\frac{26±2\sqrt{78569}}{-140}
Multiply 2 times -70.
x=\frac{2\sqrt{78569}+26}{-140}
Now solve the equation x=\frac{26±2\sqrt{78569}}{-140} when ± is plus. Add 26 to 2\sqrt{78569}.
x=\frac{-\sqrt{78569}-13}{70}
Divide 26+2\sqrt{78569} by -140.
x=\frac{26-2\sqrt{78569}}{-140}
Now solve the equation x=\frac{26±2\sqrt{78569}}{-140} when ± is minus. Subtract 2\sqrt{78569} from 26.
x=\frac{\sqrt{78569}-13}{70}
Divide 26-2\sqrt{78569} by -140.
x=\frac{-\sqrt{78569}-13}{70} x=\frac{\sqrt{78569}-13}{70}
The equation is now solved.
35\times 27+35\times 5+7\times 2x=5\times 8x+2x\times 35x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of x,5x,7x.
945+175+7\times 2x=5\times 8x+2x\times 35x
Do the multiplications.
1120+7\times 2x=5\times 8x+2x\times 35x
Add 945 and 175 to get 1120.
1120+14x=5\times 8x+2x\times 35x
Multiply 7 and 2 to get 14.
1120+14x=5\times 8x+2x^{2}\times 35
Multiply x and x to get x^{2}.
1120+14x=40x+2x^{2}\times 35
Multiply 5 and 8 to get 40.
1120+14x=40x+70x^{2}
Multiply 2 and 35 to get 70.
1120+14x-40x=70x^{2}
Subtract 40x from both sides.
1120-26x=70x^{2}
Combine 14x and -40x to get -26x.
1120-26x-70x^{2}=0
Subtract 70x^{2} from both sides.
-26x-70x^{2}=-1120
Subtract 1120 from both sides. Anything subtracted from zero gives its negation.
-70x^{2}-26x=-1120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-70x^{2}-26x}{-70}=-\frac{1120}{-70}
Divide both sides by -70.
x^{2}+\left(-\frac{26}{-70}\right)x=-\frac{1120}{-70}
Dividing by -70 undoes the multiplication by -70.
x^{2}+\frac{13}{35}x=-\frac{1120}{-70}
Reduce the fraction \frac{-26}{-70} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{13}{35}x=16
Divide -1120 by -70.
x^{2}+\frac{13}{35}x+\left(\frac{13}{70}\right)^{2}=16+\left(\frac{13}{70}\right)^{2}
Divide \frac{13}{35}, the coefficient of the x term, by 2 to get \frac{13}{70}. Then add the square of \frac{13}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{35}x+\frac{169}{4900}=16+\frac{169}{4900}
Square \frac{13}{70} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{35}x+\frac{169}{4900}=\frac{78569}{4900}
Add 16 to \frac{169}{4900}.
\left(x+\frac{13}{70}\right)^{2}=\frac{78569}{4900}
Factor x^{2}+\frac{13}{35}x+\frac{169}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{70}\right)^{2}}=\sqrt{\frac{78569}{4900}}
Take the square root of both sides of the equation.
x+\frac{13}{70}=\frac{\sqrt{78569}}{70} x+\frac{13}{70}=-\frac{\sqrt{78569}}{70}
Simplify.
x=\frac{\sqrt{78569}-13}{70} x=\frac{-\sqrt{78569}-13}{70}
Subtract \frac{13}{70} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}