Evaluate
\frac{89}{10}=8.9
Factor
\frac{89}{2 \cdot 5} = 8\frac{9}{10} = 8.9
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)267}\\\end{array}
Use the 1^{st} digit 2 from dividend 267
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)267}\\\end{array}
Since 2 is less than 30, use the next digit 6 from dividend 267 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)267}\\\end{array}
Use the 2^{nd} digit 6 from dividend 267
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)267}\\\end{array}
Since 26 is less than 30, use the next digit 7 from dividend 267 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)267}\\\end{array}
Use the 3^{rd} digit 7 from dividend 267
\begin{array}{l}\phantom{30)}008\phantom{6}\\30\overline{)267}\\\phantom{30)}\underline{\phantom{}240\phantom{}}\\\phantom{30)9}27\\\end{array}
Find closest multiple of 30 to 267. We see that 8 \times 30 = 240 is the nearest. Now subtract 240 from 267 to get reminder 27. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }27
Since 27 is less than 30, stop the division. The reminder is 27. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}