Evaluate
\frac{28889}{4}=7222.25
Factor
\frac{7 \cdot 4127}{2 ^ {2}} = 7222\frac{1}{4} = 7222.25
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)260001}\\\end{array}
Use the 1^{st} digit 2 from dividend 260001
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)260001}\\\end{array}
Since 2 is less than 36, use the next digit 6 from dividend 260001 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)260001}\\\end{array}
Use the 2^{nd} digit 6 from dividend 260001
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)260001}\\\end{array}
Since 26 is less than 36, use the next digit 0 from dividend 260001 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)260001}\\\end{array}
Use the 3^{rd} digit 0 from dividend 260001
\begin{array}{l}\phantom{36)}007\phantom{6}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}8\\\end{array}
Find closest multiple of 36 to 260. We see that 7 \times 36 = 252 is the nearest. Now subtract 252 from 260 to get reminder 8. Add 7 to quotient.
\begin{array}{l}\phantom{36)}007\phantom{7}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\end{array}
Use the 4^{th} digit 0 from dividend 260001
\begin{array}{l}\phantom{36)}0072\phantom{8}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\phantom{36)}\underline{\phantom{99}72\phantom{99}}\\\phantom{36)999}8\\\end{array}
Find closest multiple of 36 to 80. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{36)}0072\phantom{9}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\phantom{36)}\underline{\phantom{99}72\phantom{99}}\\\phantom{36)999}80\\\end{array}
Use the 5^{th} digit 0 from dividend 260001
\begin{array}{l}\phantom{36)}00722\phantom{10}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\phantom{36)}\underline{\phantom{99}72\phantom{99}}\\\phantom{36)999}80\\\phantom{36)}\underline{\phantom{999}72\phantom{9}}\\\phantom{36)9999}8\\\end{array}
Find closest multiple of 36 to 80. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{36)}00722\phantom{11}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\phantom{36)}\underline{\phantom{99}72\phantom{99}}\\\phantom{36)999}80\\\phantom{36)}\underline{\phantom{999}72\phantom{9}}\\\phantom{36)9999}81\\\end{array}
Use the 6^{th} digit 1 from dividend 260001
\begin{array}{l}\phantom{36)}007222\phantom{12}\\36\overline{)260001}\\\phantom{36)}\underline{\phantom{}252\phantom{999}}\\\phantom{36)99}80\\\phantom{36)}\underline{\phantom{99}72\phantom{99}}\\\phantom{36)999}80\\\phantom{36)}\underline{\phantom{999}72\phantom{9}}\\\phantom{36)9999}81\\\phantom{36)}\underline{\phantom{9999}72\phantom{}}\\\phantom{36)99999}9\\\end{array}
Find closest multiple of 36 to 81. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 81 to get reminder 9. Add 2 to quotient.
\text{Quotient: }7222 \text{Reminder: }9
Since 9 is less than 36, stop the division. The reminder is 9. The topmost line 007222 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7222.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}