Evaluate
\frac{102700}{45987}\approx 2.233239829
Factor
\frac{13 \cdot 79 \cdot 2 ^ {2} \cdot 5 ^ {2}}{3 \cdot 15329} = 2\frac{10726}{45987} = 2.2332398286472266
Share
Copied to clipboard
\frac{26000\times \frac{632}{120000}}{1-\left(1+\frac{0.0632}{12}\right)\left(-12\right)\times 5}
Expand \frac{0.0632}{12} by multiplying both numerator and the denominator by 10000.
\frac{26000\times \frac{79}{15000}}{1-\left(1+\frac{0.0632}{12}\right)\left(-12\right)\times 5}
Reduce the fraction \frac{632}{120000} to lowest terms by extracting and canceling out 8.
\frac{\frac{26000\times 79}{15000}}{1-\left(1+\frac{0.0632}{12}\right)\left(-12\right)\times 5}
Express 26000\times \frac{79}{15000} as a single fraction.
\frac{\frac{2054000}{15000}}{1-\left(1+\frac{0.0632}{12}\right)\left(-12\right)\times 5}
Multiply 26000 and 79 to get 2054000.
\frac{\frac{2054}{15}}{1-\left(1+\frac{0.0632}{12}\right)\left(-12\right)\times 5}
Reduce the fraction \frac{2054000}{15000} to lowest terms by extracting and canceling out 1000.
\frac{\frac{2054}{15}}{1-\left(1+\frac{632}{120000}\right)\left(-12\right)\times 5}
Expand \frac{0.0632}{12} by multiplying both numerator and the denominator by 10000.
\frac{\frac{2054}{15}}{1-\left(1+\frac{79}{15000}\right)\left(-12\right)\times 5}
Reduce the fraction \frac{632}{120000} to lowest terms by extracting and canceling out 8.
\frac{\frac{2054}{15}}{1-\left(\frac{15000}{15000}+\frac{79}{15000}\right)\left(-12\right)\times 5}
Convert 1 to fraction \frac{15000}{15000}.
\frac{\frac{2054}{15}}{1-\frac{15000+79}{15000}\left(-12\right)\times 5}
Since \frac{15000}{15000} and \frac{79}{15000} have the same denominator, add them by adding their numerators.
\frac{\frac{2054}{15}}{1-\frac{15079}{15000}\left(-12\right)\times 5}
Add 15000 and 79 to get 15079.
\frac{\frac{2054}{15}}{1-\frac{15079\left(-12\right)}{15000}\times 5}
Express \frac{15079}{15000}\left(-12\right) as a single fraction.
\frac{\frac{2054}{15}}{1-\frac{-180948}{15000}\times 5}
Multiply 15079 and -12 to get -180948.
\frac{\frac{2054}{15}}{1-\left(-\frac{15079}{1250}\times 5\right)}
Reduce the fraction \frac{-180948}{15000} to lowest terms by extracting and canceling out 12.
\frac{\frac{2054}{15}}{1-\frac{-15079\times 5}{1250}}
Express -\frac{15079}{1250}\times 5 as a single fraction.
\frac{\frac{2054}{15}}{1-\frac{-75395}{1250}}
Multiply -15079 and 5 to get -75395.
\frac{\frac{2054}{15}}{1-\left(-\frac{15079}{250}\right)}
Reduce the fraction \frac{-75395}{1250} to lowest terms by extracting and canceling out 5.
\frac{\frac{2054}{15}}{1+\frac{15079}{250}}
The opposite of -\frac{15079}{250} is \frac{15079}{250}.
\frac{\frac{2054}{15}}{\frac{250}{250}+\frac{15079}{250}}
Convert 1 to fraction \frac{250}{250}.
\frac{\frac{2054}{15}}{\frac{250+15079}{250}}
Since \frac{250}{250} and \frac{15079}{250} have the same denominator, add them by adding their numerators.
\frac{\frac{2054}{15}}{\frac{15329}{250}}
Add 250 and 15079 to get 15329.
\frac{2054}{15}\times \frac{250}{15329}
Divide \frac{2054}{15} by \frac{15329}{250} by multiplying \frac{2054}{15} by the reciprocal of \frac{15329}{250}.
\frac{2054\times 250}{15\times 15329}
Multiply \frac{2054}{15} times \frac{250}{15329} by multiplying numerator times numerator and denominator times denominator.
\frac{513500}{229935}
Do the multiplications in the fraction \frac{2054\times 250}{15\times 15329}.
\frac{102700}{45987}
Reduce the fraction \frac{513500}{229935} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}