Evaluate
\frac{\left(25x^{2}-6\right)^{2}}{900}
Factor
\frac{\left(25x^{2}-6\right)^{2}}{900}
Graph
Share
Copied to clipboard
\frac{25x^{4}}{36}-\frac{12x^{2}}{36}+\frac{1}{25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 36 and 3 is 36. Multiply \frac{x^{2}}{3} times \frac{12}{12}.
\frac{25x^{4}-12x^{2}}{36}+\frac{1}{25}
Since \frac{25x^{4}}{36} and \frac{12x^{2}}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{25\left(25x^{4}-12x^{2}\right)}{900}+\frac{36}{900}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 36 and 25 is 900. Multiply \frac{25x^{4}-12x^{2}}{36} times \frac{25}{25}. Multiply \frac{1}{25} times \frac{36}{36}.
\frac{25\left(25x^{4}-12x^{2}\right)+36}{900}
Since \frac{25\left(25x^{4}-12x^{2}\right)}{900} and \frac{36}{900} have the same denominator, add them by adding their numerators.
\frac{625x^{4}-300x^{2}+36}{900}
Do the multiplications in 25\left(25x^{4}-12x^{2}\right)+36.
\frac{625x^{4}-300x^{2}+36}{900}
Factor out \frac{1}{900}.
\left(25x^{2}-6\right)^{2}
Consider 625x^{4}-300x^{2}+36. Use the perfect square formula, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, where a=25x^{2} and b=6.
\frac{\left(25x^{2}-6\right)^{2}}{900}
Rewrite the complete factored expression. Polynomial 25x^{2}-6 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}