Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{25}{\left(y-2\right)\left(y+3\right)}-\frac{5}{y-2}
Factor y^{2}+y-6.
\frac{25}{\left(y-2\right)\left(y+3\right)}-\frac{5\left(y+3\right)}{\left(y-2\right)\left(y+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-2\right)\left(y+3\right) and y-2 is \left(y-2\right)\left(y+3\right). Multiply \frac{5}{y-2} times \frac{y+3}{y+3}.
\frac{25-5\left(y+3\right)}{\left(y-2\right)\left(y+3\right)}
Since \frac{25}{\left(y-2\right)\left(y+3\right)} and \frac{5\left(y+3\right)}{\left(y-2\right)\left(y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{25-5y-15}{\left(y-2\right)\left(y+3\right)}
Do the multiplications in 25-5\left(y+3\right).
\frac{10-5y}{\left(y-2\right)\left(y+3\right)}
Combine like terms in 25-5y-15.
\frac{5\left(-y+2\right)}{\left(y-2\right)\left(y+3\right)}
Factor the expressions that are not already factored in \frac{10-5y}{\left(y-2\right)\left(y+3\right)}.
\frac{-5\left(y-2\right)}{\left(y-2\right)\left(y+3\right)}
Extract the negative sign in 2-y.
\frac{-5}{y+3}
Cancel out y-2 in both numerator and denominator.