Solve for x (complex solution)
x=-\frac{25y^{2}}{53y^{2}-62}
y\neq 0\text{ and }y\neq -\frac{\sqrt{3286}}{53}\text{ and }y\neq \frac{\sqrt{3286}}{53}
Solve for x
x=-\frac{25y^{2}}{53y^{2}-62}
y\neq 0\text{ and }|y|\neq \frac{\sqrt{3286}}{53}
Solve for y (complex solution)
y=-i\left(-53x-25\right)^{-\frac{1}{2}}\sqrt{62x}
y=i\left(-53x-25\right)^{-\frac{1}{2}}\sqrt{62x}\text{, }x\neq 0\text{ and }x\neq -\frac{25}{53}
Solve for y
y=\sqrt{\frac{62x}{53x+25}}
y=-\sqrt{\frac{62x}{53x+25}}\text{, }x<-\frac{25}{53}\text{ or }x>0
Graph
Share
Copied to clipboard
y^{2}\times 25+xy^{2}\times 53=x\times 62
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy^{2}, the least common multiple of x,y^{2}.
y^{2}\times 25+xy^{2}\times 53-x\times 62=0
Subtract x\times 62 from both sides.
y^{2}\times 25+xy^{2}\times 53-62x=0
Multiply -1 and 62 to get -62.
xy^{2}\times 53-62x=-y^{2}\times 25
Subtract y^{2}\times 25 from both sides. Anything subtracted from zero gives its negation.
\left(y^{2}\times 53-62\right)x=-y^{2}\times 25
Combine all terms containing x.
\left(53y^{2}-62\right)x=-25y^{2}
The equation is in standard form.
\frac{\left(53y^{2}-62\right)x}{53y^{2}-62}=-\frac{25y^{2}}{53y^{2}-62}
Divide both sides by 53y^{2}-62.
x=-\frac{25y^{2}}{53y^{2}-62}
Dividing by 53y^{2}-62 undoes the multiplication by 53y^{2}-62.
x=-\frac{25y^{2}}{53y^{2}-62}\text{, }x\neq 0
Variable x cannot be equal to 0.
y^{2}\times 25+xy^{2}\times 53=x\times 62
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy^{2}, the least common multiple of x,y^{2}.
y^{2}\times 25+xy^{2}\times 53-x\times 62=0
Subtract x\times 62 from both sides.
y^{2}\times 25+xy^{2}\times 53-62x=0
Multiply -1 and 62 to get -62.
xy^{2}\times 53-62x=-y^{2}\times 25
Subtract y^{2}\times 25 from both sides. Anything subtracted from zero gives its negation.
\left(y^{2}\times 53-62\right)x=-y^{2}\times 25
Combine all terms containing x.
\left(53y^{2}-62\right)x=-25y^{2}
The equation is in standard form.
\frac{\left(53y^{2}-62\right)x}{53y^{2}-62}=-\frac{25y^{2}}{53y^{2}-62}
Divide both sides by 53y^{2}-62.
x=-\frac{25y^{2}}{53y^{2}-62}
Dividing by 53y^{2}-62 undoes the multiplication by 53y^{2}-62.
x=-\frac{25y^{2}}{53y^{2}-62}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}