Solve for x
x=\frac{3}{5}=0.6
x=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
25x^{2}-9=0
Multiply both sides by 4.
\left(5x-3\right)\left(5x+3\right)=0
Consider 25x^{2}-9. Rewrite 25x^{2}-9 as \left(5x\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{3}{5} x=-\frac{3}{5}
To find equation solutions, solve 5x-3=0 and 5x+3=0.
\frac{25}{4}x^{2}=\frac{9}{4}
Add \frac{9}{4} to both sides. Anything plus zero gives itself.
x^{2}=\frac{9}{4}\times \frac{4}{25}
Multiply both sides by \frac{4}{25}, the reciprocal of \frac{25}{4}.
x^{2}=\frac{9}{25}
Multiply \frac{9}{4} and \frac{4}{25} to get \frac{9}{25}.
x=\frac{3}{5} x=-\frac{3}{5}
Take the square root of both sides of the equation.
\frac{25}{4}x^{2}-\frac{9}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{4}\left(-\frac{9}{4}\right)}}{2\times \frac{25}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{4} for a, 0 for b, and -\frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{25}{4}\left(-\frac{9}{4}\right)}}{2\times \frac{25}{4}}
Square 0.
x=\frac{0±\sqrt{-25\left(-\frac{9}{4}\right)}}{2\times \frac{25}{4}}
Multiply -4 times \frac{25}{4}.
x=\frac{0±\sqrt{\frac{225}{4}}}{2\times \frac{25}{4}}
Multiply -25 times -\frac{9}{4}.
x=\frac{0±\frac{15}{2}}{2\times \frac{25}{4}}
Take the square root of \frac{225}{4}.
x=\frac{0±\frac{15}{2}}{\frac{25}{2}}
Multiply 2 times \frac{25}{4}.
x=\frac{3}{5}
Now solve the equation x=\frac{0±\frac{15}{2}}{\frac{25}{2}} when ± is plus.
x=-\frac{3}{5}
Now solve the equation x=\frac{0±\frac{15}{2}}{\frac{25}{2}} when ± is minus.
x=\frac{3}{5} x=-\frac{3}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}