Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(25+150i\right)\left(50-25i\right)}{\left(50+25i\right)\left(50-25i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 50-25i.
\frac{\left(25+150i\right)\left(50-25i\right)}{50^{2}-25^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(25+150i\right)\left(50-25i\right)}{3125}
By definition, i^{2} is -1. Calculate the denominator.
\frac{25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)i^{2}}{3125}
Multiply complex numbers 25+150i and 50-25i like you multiply binomials.
\frac{25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)\left(-1\right)}{3125}
By definition, i^{2} is -1.
\frac{1250-625i+7500i+3750}{3125}
Do the multiplications in 25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)\left(-1\right).
\frac{1250+3750+\left(-625+7500\right)i}{3125}
Combine the real and imaginary parts in 1250-625i+7500i+3750.
\frac{5000+6875i}{3125}
Do the additions in 1250+3750+\left(-625+7500\right)i.
\frac{8}{5}+\frac{11}{5}i
Divide 5000+6875i by 3125 to get \frac{8}{5}+\frac{11}{5}i.
Re(\frac{\left(25+150i\right)\left(50-25i\right)}{\left(50+25i\right)\left(50-25i\right)})
Multiply both numerator and denominator of \frac{25+150i}{50+25i} by the complex conjugate of the denominator, 50-25i.
Re(\frac{\left(25+150i\right)\left(50-25i\right)}{50^{2}-25^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(25+150i\right)\left(50-25i\right)}{3125})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)i^{2}}{3125})
Multiply complex numbers 25+150i and 50-25i like you multiply binomials.
Re(\frac{25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)\left(-1\right)}{3125})
By definition, i^{2} is -1.
Re(\frac{1250-625i+7500i+3750}{3125})
Do the multiplications in 25\times 50+25\times \left(-25i\right)+150i\times 50+150\left(-25\right)\left(-1\right).
Re(\frac{1250+3750+\left(-625+7500\right)i}{3125})
Combine the real and imaginary parts in 1250-625i+7500i+3750.
Re(\frac{5000+6875i}{3125})
Do the additions in 1250+3750+\left(-625+7500\right)i.
Re(\frac{8}{5}+\frac{11}{5}i)
Divide 5000+6875i by 3125 to get \frac{8}{5}+\frac{11}{5}i.
\frac{8}{5}
The real part of \frac{8}{5}+\frac{11}{5}i is \frac{8}{5}.