Evaluate
\frac{124}{23}\approx 5.391304348
Factor
\frac{2 ^ {2} \cdot 31}{23} = 5\frac{9}{23} = 5.391304347826087
Share
Copied to clipboard
\begin{array}{l}\phantom{46)}\phantom{1}\\46\overline{)248}\\\end{array}
Use the 1^{st} digit 2 from dividend 248
\begin{array}{l}\phantom{46)}0\phantom{2}\\46\overline{)248}\\\end{array}
Since 2 is less than 46, use the next digit 4 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{46)}0\phantom{3}\\46\overline{)248}\\\end{array}
Use the 2^{nd} digit 4 from dividend 248
\begin{array}{l}\phantom{46)}00\phantom{4}\\46\overline{)248}\\\end{array}
Since 24 is less than 46, use the next digit 8 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{46)}00\phantom{5}\\46\overline{)248}\\\end{array}
Use the 3^{rd} digit 8 from dividend 248
\begin{array}{l}\phantom{46)}005\phantom{6}\\46\overline{)248}\\\phantom{46)}\underline{\phantom{}230\phantom{}}\\\phantom{46)9}18\\\end{array}
Find closest multiple of 46 to 248. We see that 5 \times 46 = 230 is the nearest. Now subtract 230 from 248 to get reminder 18. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }18
Since 18 is less than 46, stop the division. The reminder is 18. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}