Evaluate
\frac{248}{21}\approx 11.80952381
Factor
\frac{2 ^ {3} \cdot 31}{3 \cdot 7} = 11\frac{17}{21} = 11.80952380952381
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)248}\\\end{array}
Use the 1^{st} digit 2 from dividend 248
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)248}\\\end{array}
Since 2 is less than 21, use the next digit 4 from dividend 248 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)248}\\\end{array}
Use the 2^{nd} digit 4 from dividend 248
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)248}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}3\\\end{array}
Find closest multiple of 21 to 24. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 24 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)248}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}38\\\end{array}
Use the 3^{rd} digit 8 from dividend 248
\begin{array}{l}\phantom{21)}011\phantom{6}\\21\overline{)248}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}38\\\phantom{21)}\underline{\phantom{9}21\phantom{}}\\\phantom{21)9}17\\\end{array}
Find closest multiple of 21 to 38. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 38 to get reminder 17. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }17
Since 17 is less than 21, stop the division. The reminder is 17. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}