Evaluate
\frac{246}{71}\approx 3.464788732
Factor
\frac{2 \cdot 3 \cdot 41}{71} = 3\frac{33}{71} = 3.464788732394366
Share
Copied to clipboard
\begin{array}{l}\phantom{71)}\phantom{1}\\71\overline{)246}\\\end{array}
Use the 1^{st} digit 2 from dividend 246
\begin{array}{l}\phantom{71)}0\phantom{2}\\71\overline{)246}\\\end{array}
Since 2 is less than 71, use the next digit 4 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{71)}0\phantom{3}\\71\overline{)246}\\\end{array}
Use the 2^{nd} digit 4 from dividend 246
\begin{array}{l}\phantom{71)}00\phantom{4}\\71\overline{)246}\\\end{array}
Since 24 is less than 71, use the next digit 6 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{71)}00\phantom{5}\\71\overline{)246}\\\end{array}
Use the 3^{rd} digit 6 from dividend 246
\begin{array}{l}\phantom{71)}003\phantom{6}\\71\overline{)246}\\\phantom{71)}\underline{\phantom{}213\phantom{}}\\\phantom{71)9}33\\\end{array}
Find closest multiple of 71 to 246. We see that 3 \times 71 = 213 is the nearest. Now subtract 213 from 246 to get reminder 33. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }33
Since 33 is less than 71, stop the division. The reminder is 33. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}