Evaluate
\frac{41}{40}=1.025
Factor
\frac{41}{2 ^ {3} \cdot 5} = 1\frac{1}{40} = 1.025
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)246}\\\end{array}
Use the 1^{st} digit 2 from dividend 246
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)246}\\\end{array}
Since 2 is less than 240, use the next digit 4 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)246}\\\end{array}
Use the 2^{nd} digit 4 from dividend 246
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)246}\\\end{array}
Since 24 is less than 240, use the next digit 6 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)246}\\\end{array}
Use the 3^{rd} digit 6 from dividend 246
\begin{array}{l}\phantom{240)}001\phantom{6}\\240\overline{)246}\\\phantom{240)}\underline{\phantom{}240\phantom{}}\\\phantom{240)99}6\\\end{array}
Find closest multiple of 240 to 246. We see that 1 \times 240 = 240 is the nearest. Now subtract 240 from 246 to get reminder 6. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }6
Since 6 is less than 240, stop the division. The reminder is 6. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}