Solve for P
P = \frac{910000}{1091} = 834\frac{106}{1091} \approx 834.09715857
Share
Copied to clipboard
24P+91000=100P\left(1+\frac{10}{100}\right)^{3}
Multiply both sides of the equation by 100.
24P+91000=100P\left(1+\frac{1}{10}\right)^{3}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
24P+91000=100P\times \left(\frac{11}{10}\right)^{3}
Add 1 and \frac{1}{10} to get \frac{11}{10}.
24P+91000=100P\times \frac{1331}{1000}
Calculate \frac{11}{10} to the power of 3 and get \frac{1331}{1000}.
24P+91000=\frac{1331}{10}P
Multiply 100 and \frac{1331}{1000} to get \frac{1331}{10}.
24P+91000-\frac{1331}{10}P=0
Subtract \frac{1331}{10}P from both sides.
-\frac{1091}{10}P+91000=0
Combine 24P and -\frac{1331}{10}P to get -\frac{1091}{10}P.
-\frac{1091}{10}P=-91000
Subtract 91000 from both sides. Anything subtracted from zero gives its negation.
P=-91000\left(-\frac{10}{1091}\right)
Multiply both sides by -\frac{10}{1091}, the reciprocal of -\frac{1091}{10}.
P=\frac{910000}{1091}
Multiply -91000 and -\frac{10}{1091} to get \frac{910000}{1091}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}