Solve for x
x = \frac{\sqrt{7} + 4}{3} \approx 2.215250437
x=\frac{4-\sqrt{7}}{3}\approx 0.45141623
Graph
Share
Copied to clipboard
24+24xx+x\left(-4\right)=60x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
24+24x^{2}+x\left(-4\right)=60x
Multiply x and x to get x^{2}.
24+24x^{2}+x\left(-4\right)-60x=0
Subtract 60x from both sides.
24+24x^{2}-64x=0
Combine x\left(-4\right) and -60x to get -64x.
24x^{2}-64x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 24\times 24}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -64 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 24\times 24}}{2\times 24}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-96\times 24}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-64\right)±\sqrt{4096-2304}}{2\times 24}
Multiply -96 times 24.
x=\frac{-\left(-64\right)±\sqrt{1792}}{2\times 24}
Add 4096 to -2304.
x=\frac{-\left(-64\right)±16\sqrt{7}}{2\times 24}
Take the square root of 1792.
x=\frac{64±16\sqrt{7}}{2\times 24}
The opposite of -64 is 64.
x=\frac{64±16\sqrt{7}}{48}
Multiply 2 times 24.
x=\frac{16\sqrt{7}+64}{48}
Now solve the equation x=\frac{64±16\sqrt{7}}{48} when ± is plus. Add 64 to 16\sqrt{7}.
x=\frac{\sqrt{7}+4}{3}
Divide 64+16\sqrt{7} by 48.
x=\frac{64-16\sqrt{7}}{48}
Now solve the equation x=\frac{64±16\sqrt{7}}{48} when ± is minus. Subtract 16\sqrt{7} from 64.
x=\frac{4-\sqrt{7}}{3}
Divide 64-16\sqrt{7} by 48.
x=\frac{\sqrt{7}+4}{3} x=\frac{4-\sqrt{7}}{3}
The equation is now solved.
24+24xx+x\left(-4\right)=60x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
24+24x^{2}+x\left(-4\right)=60x
Multiply x and x to get x^{2}.
24+24x^{2}+x\left(-4\right)-60x=0
Subtract 60x from both sides.
24+24x^{2}-64x=0
Combine x\left(-4\right) and -60x to get -64x.
24x^{2}-64x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
\frac{24x^{2}-64x}{24}=-\frac{24}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{64}{24}\right)x=-\frac{24}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{8}{3}x=-\frac{24}{24}
Reduce the fraction \frac{-64}{24} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{8}{3}x=-1
Divide -24 by 24.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-1+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-1+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{7}{9}
Add -1 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{7}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{7}}{3} x-\frac{4}{3}=-\frac{\sqrt{7}}{3}
Simplify.
x=\frac{\sqrt{7}+4}{3} x=\frac{4-\sqrt{7}}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}