Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(3t+60\right)\times 24-\left(3t-60\right)\times 24=\left(t-20\right)\left(t+20\right)
Variable t cannot be equal to any of the values -20,20 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-20\right)\left(t+20\right), the least common multiple of t-20,t+20,3.
72t+1440-\left(3t-60\right)\times 24=\left(t-20\right)\left(t+20\right)
Use the distributive property to multiply 3t+60 by 24.
72t+1440-\left(72t-1440\right)=\left(t-20\right)\left(t+20\right)
Use the distributive property to multiply 3t-60 by 24.
72t+1440-72t+1440=\left(t-20\right)\left(t+20\right)
To find the opposite of 72t-1440, find the opposite of each term.
1440+1440=\left(t-20\right)\left(t+20\right)
Combine 72t and -72t to get 0.
2880=\left(t-20\right)\left(t+20\right)
Add 1440 and 1440 to get 2880.
2880=t^{2}-400
Consider \left(t-20\right)\left(t+20\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 20.
t^{2}-400=2880
Swap sides so that all variable terms are on the left hand side.
t^{2}=2880+400
Add 400 to both sides.
t^{2}=3280
Add 2880 and 400 to get 3280.
t=4\sqrt{205} t=-4\sqrt{205}
Take the square root of both sides of the equation.
\left(3t+60\right)\times 24-\left(3t-60\right)\times 24=\left(t-20\right)\left(t+20\right)
Variable t cannot be equal to any of the values -20,20 since division by zero is not defined. Multiply both sides of the equation by 3\left(t-20\right)\left(t+20\right), the least common multiple of t-20,t+20,3.
72t+1440-\left(3t-60\right)\times 24=\left(t-20\right)\left(t+20\right)
Use the distributive property to multiply 3t+60 by 24.
72t+1440-\left(72t-1440\right)=\left(t-20\right)\left(t+20\right)
Use the distributive property to multiply 3t-60 by 24.
72t+1440-72t+1440=\left(t-20\right)\left(t+20\right)
To find the opposite of 72t-1440, find the opposite of each term.
1440+1440=\left(t-20\right)\left(t+20\right)
Combine 72t and -72t to get 0.
2880=\left(t-20\right)\left(t+20\right)
Add 1440 and 1440 to get 2880.
2880=t^{2}-400
Consider \left(t-20\right)\left(t+20\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 20.
t^{2}-400=2880
Swap sides so that all variable terms are on the left hand side.
t^{2}-400-2880=0
Subtract 2880 from both sides.
t^{2}-3280=0
Subtract 2880 from -400 to get -3280.
t=\frac{0±\sqrt{0^{2}-4\left(-3280\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-3280\right)}}{2}
Square 0.
t=\frac{0±\sqrt{13120}}{2}
Multiply -4 times -3280.
t=\frac{0±8\sqrt{205}}{2}
Take the square root of 13120.
t=4\sqrt{205}
Now solve the equation t=\frac{0±8\sqrt{205}}{2} when ± is plus.
t=-4\sqrt{205}
Now solve the equation t=\frac{0±8\sqrt{205}}{2} when ± is minus.
t=4\sqrt{205} t=-4\sqrt{205}
The equation is now solved.