Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Share

\frac{24\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{24\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{24\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{24\times 1+24i}{2}
Multiply 24 times 1+i.
\frac{24+24i}{2}
Do the multiplications in 24\times 1+24i.
12+12i
Divide 24+24i by 2 to get 12+12i.
Re(\frac{24\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{24}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{24\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{24\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{24\times 1+24i}{2})
Multiply 24 times 1+i.
Re(\frac{24+24i}{2})
Do the multiplications in 24\times 1+24i.
Re(12+12i)
Divide 24+24i by 2 to get 12+12i.
12
The real part of 12+12i is 12.