Solve for x
x=-32
Graph
Share
Copied to clipboard
24+x=0.4\left(x+12\right)
Variable x cannot be equal to -12 since division by zero is not defined. Multiply both sides of the equation by x+12.
24+x=0.4x+4.8
Use the distributive property to multiply 0.4 by x+12.
24+x-0.4x=4.8
Subtract 0.4x from both sides.
24+0.6x=4.8
Combine x and -0.4x to get 0.6x.
0.6x=4.8-24
Subtract 24 from both sides.
0.6x=-19.2
Subtract 24 from 4.8 to get -19.2.
x=\frac{-19.2}{0.6}
Divide both sides by 0.6.
x=\frac{-192}{6}
Expand \frac{-19.2}{0.6} by multiplying both numerator and the denominator by 10.
x=-32
Divide -192 by 6 to get -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}