Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(24+11i\right)\left(-4-5i\right)}{\left(-4+5i\right)\left(-4-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -4-5i.
\frac{\left(24+11i\right)\left(-4-5i\right)}{\left(-4\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(24+11i\right)\left(-4-5i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)i^{2}}{41}
Multiply complex numbers 24+11i and -4-5i like you multiply binomials.
\frac{24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{-96-120i-44i+55}{41}
Do the multiplications in 24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)\left(-1\right).
\frac{-96+55+\left(-120-44\right)i}{41}
Combine the real and imaginary parts in -96-120i-44i+55.
\frac{-41-164i}{41}
Do the additions in -96+55+\left(-120-44\right)i.
-1-4i
Divide -41-164i by 41 to get -1-4i.
Re(\frac{\left(24+11i\right)\left(-4-5i\right)}{\left(-4+5i\right)\left(-4-5i\right)})
Multiply both numerator and denominator of \frac{24+11i}{-4+5i} by the complex conjugate of the denominator, -4-5i.
Re(\frac{\left(24+11i\right)\left(-4-5i\right)}{\left(-4\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(24+11i\right)\left(-4-5i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)i^{2}}{41})
Multiply complex numbers 24+11i and -4-5i like you multiply binomials.
Re(\frac{24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{-96-120i-44i+55}{41})
Do the multiplications in 24\left(-4\right)+24\times \left(-5i\right)+11i\left(-4\right)+11\left(-5\right)\left(-1\right).
Re(\frac{-96+55+\left(-120-44\right)i}{41})
Combine the real and imaginary parts in -96-120i-44i+55.
Re(\frac{-41-164i}{41})
Do the additions in -96+55+\left(-120-44\right)i.
Re(-1-4i)
Divide -41-164i by 41 to get -1-4i.
-1
The real part of -1-4i is -1.