Evaluate
\frac{2325}{1993}\approx 1.166583041
Factor
\frac{3 \cdot 5 ^ {2} \cdot 31}{1993} = 1\frac{332}{1993} = 1.166583040642248
Share
Copied to clipboard
\begin{array}{l}\phantom{1993)}\phantom{1}\\1993\overline{)2325}\\\end{array}
Use the 1^{st} digit 2 from dividend 2325
\begin{array}{l}\phantom{1993)}0\phantom{2}\\1993\overline{)2325}\\\end{array}
Since 2 is less than 1993, use the next digit 3 from dividend 2325 and add 0 to the quotient
\begin{array}{l}\phantom{1993)}0\phantom{3}\\1993\overline{)2325}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2325
\begin{array}{l}\phantom{1993)}00\phantom{4}\\1993\overline{)2325}\\\end{array}
Since 23 is less than 1993, use the next digit 2 from dividend 2325 and add 0 to the quotient
\begin{array}{l}\phantom{1993)}00\phantom{5}\\1993\overline{)2325}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2325
\begin{array}{l}\phantom{1993)}000\phantom{6}\\1993\overline{)2325}\\\end{array}
Since 232 is less than 1993, use the next digit 5 from dividend 2325 and add 0 to the quotient
\begin{array}{l}\phantom{1993)}000\phantom{7}\\1993\overline{)2325}\\\end{array}
Use the 4^{th} digit 5 from dividend 2325
\begin{array}{l}\phantom{1993)}0001\phantom{8}\\1993\overline{)2325}\\\phantom{1993)}\underline{\phantom{}1993\phantom{}}\\\phantom{1993)9}332\\\end{array}
Find closest multiple of 1993 to 2325. We see that 1 \times 1993 = 1993 is the nearest. Now subtract 1993 from 2325 to get reminder 332. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }332
Since 332 is less than 1993, stop the division. The reminder is 332. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}