Evaluate
\frac{2315}{1111}\approx 2.083708371
Factor
\frac{5 \cdot 463}{11 \cdot 101} = 2\frac{93}{1111} = 2.083708370837084
Share
Copied to clipboard
\begin{array}{l}\phantom{1111)}\phantom{1}\\1111\overline{)2315}\\\end{array}
Use the 1^{st} digit 2 from dividend 2315
\begin{array}{l}\phantom{1111)}0\phantom{2}\\1111\overline{)2315}\\\end{array}
Since 2 is less than 1111, use the next digit 3 from dividend 2315 and add 0 to the quotient
\begin{array}{l}\phantom{1111)}0\phantom{3}\\1111\overline{)2315}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2315
\begin{array}{l}\phantom{1111)}00\phantom{4}\\1111\overline{)2315}\\\end{array}
Since 23 is less than 1111, use the next digit 1 from dividend 2315 and add 0 to the quotient
\begin{array}{l}\phantom{1111)}00\phantom{5}\\1111\overline{)2315}\\\end{array}
Use the 3^{rd} digit 1 from dividend 2315
\begin{array}{l}\phantom{1111)}000\phantom{6}\\1111\overline{)2315}\\\end{array}
Since 231 is less than 1111, use the next digit 5 from dividend 2315 and add 0 to the quotient
\begin{array}{l}\phantom{1111)}000\phantom{7}\\1111\overline{)2315}\\\end{array}
Use the 4^{th} digit 5 from dividend 2315
\begin{array}{l}\phantom{1111)}0002\phantom{8}\\1111\overline{)2315}\\\phantom{1111)}\underline{\phantom{}2222\phantom{}}\\\phantom{1111)99}93\\\end{array}
Find closest multiple of 1111 to 2315. We see that 2 \times 1111 = 2222 is the nearest. Now subtract 2222 from 2315 to get reminder 93. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }93
Since 93 is less than 1111, stop the division. The reminder is 93. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}