Evaluate
\frac{110a}{147}
Differentiate w.r.t. a
\frac{110}{147} = 0.7482993197278912
Share
Copied to clipboard
\frac{\frac{22}{21}a^{2}}{\frac{2a}{5}+\frac{5a}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{5}{5}.
\frac{\frac{22}{21}a^{2}}{\frac{2a+5a}{5}}
Since \frac{2a}{5} and \frac{5a}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{22}{21}a^{2}}{\frac{7a}{5}}
Combine like terms in 2a+5a.
\frac{\frac{22}{21}a^{2}\times 5}{7a}
Divide \frac{22}{21}a^{2} by \frac{7a}{5} by multiplying \frac{22}{21}a^{2} by the reciprocal of \frac{7a}{5}.
\frac{\frac{22}{21}\times 5a}{7}
Cancel out a in both numerator and denominator.
\frac{\frac{110}{21}a}{7}
Multiply \frac{22}{21} and 5 to get \frac{110}{21}.
\frac{110}{147}a
Divide \frac{110}{21}a by 7 to get \frac{110}{147}a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{22}{21}a^{2}}{\frac{2a}{5}+\frac{5a}{5}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{5}{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{22}{21}a^{2}}{\frac{2a+5a}{5}})
Since \frac{2a}{5} and \frac{5a}{5} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{22}{21}a^{2}}{\frac{7a}{5}})
Combine like terms in 2a+5a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{22}{21}a^{2}\times 5}{7a})
Divide \frac{22}{21}a^{2} by \frac{7a}{5} by multiplying \frac{22}{21}a^{2} by the reciprocal of \frac{7a}{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{22}{21}\times 5a}{7})
Cancel out a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{110}{21}a}{7})
Multiply \frac{22}{21} and 5 to get \frac{110}{21}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{110}{147}a)
Divide \frac{110}{21}a by 7 to get \frac{110}{147}a.
\frac{110}{147}a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{110}{147}a^{0}
Subtract 1 from 1.
\frac{110}{147}\times 1
For any term t except 0, t^{0}=1.
\frac{110}{147}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}