Evaluate
\frac{214}{99}\approx 2.161616162
Factor
\frac{2 \cdot 107}{3 ^ {2} \cdot 11} = 2\frac{16}{99} = 2.1616161616161618
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)214}\\\end{array}
Use the 1^{st} digit 2 from dividend 214
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)214}\\\end{array}
Since 2 is less than 99, use the next digit 1 from dividend 214 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)214}\\\end{array}
Use the 2^{nd} digit 1 from dividend 214
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)214}\\\end{array}
Since 21 is less than 99, use the next digit 4 from dividend 214 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)214}\\\end{array}
Use the 3^{rd} digit 4 from dividend 214
\begin{array}{l}\phantom{99)}002\phantom{6}\\99\overline{)214}\\\phantom{99)}\underline{\phantom{}198\phantom{}}\\\phantom{99)9}16\\\end{array}
Find closest multiple of 99 to 214. We see that 2 \times 99 = 198 is the nearest. Now subtract 198 from 214 to get reminder 16. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }16
Since 16 is less than 99, stop the division. The reminder is 16. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}