Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(21-i\right)i}{5i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(21-i\right)i}{-5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{21i-i^{2}}{-5}
Multiply 21-i times i.
\frac{21i-\left(-1\right)}{-5}
By definition, i^{2} is -1.
\frac{1+21i}{-5}
Do the multiplications in 21i-\left(-1\right). Reorder the terms.
-\frac{1}{5}-\frac{21}{5}i
Divide 1+21i by -5 to get -\frac{1}{5}-\frac{21}{5}i.
Re(\frac{\left(21-i\right)i}{5i^{2}})
Multiply both numerator and denominator of \frac{21-i}{5i} by imaginary unit i.
Re(\frac{\left(21-i\right)i}{-5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{21i-i^{2}}{-5})
Multiply 21-i times i.
Re(\frac{21i-\left(-1\right)}{-5})
By definition, i^{2} is -1.
Re(\frac{1+21i}{-5})
Do the multiplications in 21i-\left(-1\right). Reorder the terms.
Re(-\frac{1}{5}-\frac{21}{5}i)
Divide 1+21i by -5 to get -\frac{1}{5}-\frac{21}{5}i.
-\frac{1}{5}
The real part of -\frac{1}{5}-\frac{21}{5}i is -\frac{1}{5}.