Solve for x
x=-\frac{2}{11}\approx -0.181818182
x=6
Graph
Share
Copied to clipboard
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Variable x cannot be equal to any of the values -1,0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right)\left(x+1\right), the least common multiple of x+1,x-2,x.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x by x-2.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x^{2}-2x by 21.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x by x+1.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x^{2}+x by 16.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
Use the distributive property to multiply x-2 by x+1 and combine like terms.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
Use the distributive property to multiply x^{2}-x-2 by 6.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
To find the opposite of 6x^{2}-6x-12, find the opposite of each term.
21x^{2}-42x=10x^{2}+16x+6x+12
Combine 16x^{2} and -6x^{2} to get 10x^{2}.
21x^{2}-42x=10x^{2}+22x+12
Combine 16x and 6x to get 22x.
21x^{2}-42x-10x^{2}=22x+12
Subtract 10x^{2} from both sides.
11x^{2}-42x=22x+12
Combine 21x^{2} and -10x^{2} to get 11x^{2}.
11x^{2}-42x-22x=12
Subtract 22x from both sides.
11x^{2}-64x=12
Combine -42x and -22x to get -64x.
11x^{2}-64x-12=0
Subtract 12 from both sides.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 11\left(-12\right)}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, -64 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 11\left(-12\right)}}{2\times 11}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-44\left(-12\right)}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-64\right)±\sqrt{4096+528}}{2\times 11}
Multiply -44 times -12.
x=\frac{-\left(-64\right)±\sqrt{4624}}{2\times 11}
Add 4096 to 528.
x=\frac{-\left(-64\right)±68}{2\times 11}
Take the square root of 4624.
x=\frac{64±68}{2\times 11}
The opposite of -64 is 64.
x=\frac{64±68}{22}
Multiply 2 times 11.
x=\frac{132}{22}
Now solve the equation x=\frac{64±68}{22} when ± is plus. Add 64 to 68.
x=6
Divide 132 by 22.
x=-\frac{4}{22}
Now solve the equation x=\frac{64±68}{22} when ± is minus. Subtract 68 from 64.
x=-\frac{2}{11}
Reduce the fraction \frac{-4}{22} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{2}{11}
The equation is now solved.
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Variable x cannot be equal to any of the values -1,0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right)\left(x+1\right), the least common multiple of x+1,x-2,x.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x by x-2.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x^{2}-2x by 21.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x by x+1.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
Use the distributive property to multiply x^{2}+x by 16.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
Use the distributive property to multiply x-2 by x+1 and combine like terms.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
Use the distributive property to multiply x^{2}-x-2 by 6.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
To find the opposite of 6x^{2}-6x-12, find the opposite of each term.
21x^{2}-42x=10x^{2}+16x+6x+12
Combine 16x^{2} and -6x^{2} to get 10x^{2}.
21x^{2}-42x=10x^{2}+22x+12
Combine 16x and 6x to get 22x.
21x^{2}-42x-10x^{2}=22x+12
Subtract 10x^{2} from both sides.
11x^{2}-42x=22x+12
Combine 21x^{2} and -10x^{2} to get 11x^{2}.
11x^{2}-42x-22x=12
Subtract 22x from both sides.
11x^{2}-64x=12
Combine -42x and -22x to get -64x.
\frac{11x^{2}-64x}{11}=\frac{12}{11}
Divide both sides by 11.
x^{2}-\frac{64}{11}x=\frac{12}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}-\frac{64}{11}x+\left(-\frac{32}{11}\right)^{2}=\frac{12}{11}+\left(-\frac{32}{11}\right)^{2}
Divide -\frac{64}{11}, the coefficient of the x term, by 2 to get -\frac{32}{11}. Then add the square of -\frac{32}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{12}{11}+\frac{1024}{121}
Square -\frac{32}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{1156}{121}
Add \frac{12}{11} to \frac{1024}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{32}{11}\right)^{2}=\frac{1156}{121}
Factor x^{2}-\frac{64}{11}x+\frac{1024}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32}{11}\right)^{2}}=\sqrt{\frac{1156}{121}}
Take the square root of both sides of the equation.
x-\frac{32}{11}=\frac{34}{11} x-\frac{32}{11}=-\frac{34}{11}
Simplify.
x=6 x=-\frac{2}{11}
Add \frac{32}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}