Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{\left(512+5\sqrt{3}\right)\left(512-5\sqrt{3}\right)}
Rationalize the denominator of \frac{21\sqrt{15}}{512+5\sqrt{3}} by multiplying numerator and denominator by 512-5\sqrt{3}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{512^{2}-\left(5\sqrt{3}\right)^{2}}
Consider \left(512+5\sqrt{3}\right)\left(512-5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-\left(5\sqrt{3}\right)^{2}}
Calculate 512 to the power of 2 and get 262144.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-5^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-25\left(\sqrt{3}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-25\times 3}
The square of \sqrt{3} is 3.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-75}
Multiply 25 and 3 to get 75.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262069}
Subtract 75 from 262144 to get 262069.
\frac{10752\sqrt{15}-105\sqrt{3}\sqrt{15}}{262069}
Use the distributive property to multiply 21\sqrt{15} by 512-5\sqrt{3}.
\frac{10752\sqrt{15}-105\sqrt{3}\sqrt{3}\sqrt{5}}{262069}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{10752\sqrt{15}-105\times 3\sqrt{5}}{262069}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{10752\sqrt{15}-315\sqrt{5}}{262069}
Multiply -105 and 3 to get -315.