Evaluate
3\sqrt{5}j
Differentiate w.r.t. j
3 \sqrt{5} = 6.708203932
Share
Copied to clipboard
\frac{21\sqrt{15}}{2\sqrt{3}+5\sqrt{3}}j
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{21\sqrt{15}}{7\sqrt{3}}j
Combine 2\sqrt{3} and 5\sqrt{3} to get 7\sqrt{3}.
\frac{3\sqrt{15}}{\sqrt{3}}j
Cancel out 7 in both numerator and denominator.
\frac{3\sqrt{15}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}j
Rationalize the denominator of \frac{3\sqrt{15}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\sqrt{15}\sqrt{3}}{3}j
The square of \sqrt{3} is 3.
\frac{3\sqrt{3}\sqrt{5}\sqrt{3}}{3}j
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\times 3\sqrt{5}}{3}j
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{5}j
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}