Solve for x
x = \frac{225}{4} = 56\frac{1}{4} = 56.25
Graph
Share
Copied to clipboard
\left(x+45\right)\times \frac{200}{x}=2\times 180
Variable x cannot be equal to -45 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+45\right), the least common multiple of 2,x+45.
\frac{\left(x+45\right)\times 200}{x}=2\times 180
Express \left(x+45\right)\times \frac{200}{x} as a single fraction.
\frac{\left(x+45\right)\times 200}{x}=360
Multiply 2 and 180 to get 360.
\frac{200x+9000}{x}=360
Use the distributive property to multiply x+45 by 200.
200x+9000=360x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
200x+9000-360x=0
Subtract 360x from both sides.
-160x+9000=0
Combine 200x and -360x to get -160x.
-160x=-9000
Subtract 9000 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9000}{-160}
Divide both sides by -160.
x=\frac{225}{4}
Reduce the fraction \frac{-9000}{-160} to lowest terms by extracting and canceling out -40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}