Solve for b
b\neq 0
a=\frac{20}{13-4c}\text{ and }c\neq \frac{13}{4}\text{ and }c\neq 2
Solve for a
a=\frac{20}{13-4c}
c\neq 2\text{ and }c\neq \frac{13}{4}\text{ and }b\neq 0
Share
Copied to clipboard
\left(9a-36\right)\times 20a^{2}b=4b\left(c-2\right)a\times 36a^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36b\left(a-4\right)\left(c-2\right)a^{2}, the least common multiple of 4a^{2}bc-8a^{2}b,9a^{2}-36a.
\left(180a-720\right)a^{2}b=4b\left(c-2\right)a\times 36a^{2}
Use the distributive property to multiply 9a-36 by 20.
\left(180a^{3}-720a^{2}\right)b=4b\left(c-2\right)a\times 36a^{2}
Use the distributive property to multiply 180a-720 by a^{2}.
180a^{3}b-720a^{2}b=4b\left(c-2\right)a\times 36a^{2}
Use the distributive property to multiply 180a^{3}-720a^{2} by b.
180a^{3}b-720a^{2}b=4b\left(c-2\right)a^{3}\times 36
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
180a^{3}b-720a^{2}b=144b\left(c-2\right)a^{3}
Multiply 4 and 36 to get 144.
180a^{3}b-720a^{2}b=\left(144bc-288b\right)a^{3}
Use the distributive property to multiply 144b by c-2.
180a^{3}b-720a^{2}b=144bca^{3}-288ba^{3}
Use the distributive property to multiply 144bc-288b by a^{3}.
180a^{3}b-720a^{2}b-144bca^{3}=-288ba^{3}
Subtract 144bca^{3} from both sides.
180a^{3}b-720a^{2}b-144bca^{3}+288ba^{3}=0
Add 288ba^{3} to both sides.
468a^{3}b-720a^{2}b-144bca^{3}=0
Combine 180a^{3}b and 288ba^{3} to get 468a^{3}b.
\left(468a^{3}-720a^{2}-144ca^{3}\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 468a^{3}-720a^{2}-144ca^{3}.
b\in \emptyset
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}