Solve for x
x=2\sqrt{95}+19\approx 38.49358869
x=19-2\sqrt{95}\approx -0.49358869
Graph
Share
Copied to clipboard
x^{2}\times 20=\left(x+1\right)^{2}\times 19
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x+1\right)^{2}, the least common multiple of \left(1+x\right)^{2},x^{2}.
x^{2}\times 20=\left(x^{2}+2x+1\right)\times 19
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}\times 20=19x^{2}+38x+19
Use the distributive property to multiply x^{2}+2x+1 by 19.
x^{2}\times 20-19x^{2}=38x+19
Subtract 19x^{2} from both sides.
x^{2}=38x+19
Combine x^{2}\times 20 and -19x^{2} to get x^{2}.
x^{2}-38x=19
Subtract 38x from both sides.
x^{2}-38x-19=0
Subtract 19 from both sides.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\left(-19\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -38 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\left(-19\right)}}{2}
Square -38.
x=\frac{-\left(-38\right)±\sqrt{1444+76}}{2}
Multiply -4 times -19.
x=\frac{-\left(-38\right)±\sqrt{1520}}{2}
Add 1444 to 76.
x=\frac{-\left(-38\right)±4\sqrt{95}}{2}
Take the square root of 1520.
x=\frac{38±4\sqrt{95}}{2}
The opposite of -38 is 38.
x=\frac{4\sqrt{95}+38}{2}
Now solve the equation x=\frac{38±4\sqrt{95}}{2} when ± is plus. Add 38 to 4\sqrt{95}.
x=2\sqrt{95}+19
Divide 38+4\sqrt{95} by 2.
x=\frac{38-4\sqrt{95}}{2}
Now solve the equation x=\frac{38±4\sqrt{95}}{2} when ± is minus. Subtract 4\sqrt{95} from 38.
x=19-2\sqrt{95}
Divide 38-4\sqrt{95} by 2.
x=2\sqrt{95}+19 x=19-2\sqrt{95}
The equation is now solved.
x^{2}\times 20=\left(x+1\right)^{2}\times 19
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x+1\right)^{2}, the least common multiple of \left(1+x\right)^{2},x^{2}.
x^{2}\times 20=\left(x^{2}+2x+1\right)\times 19
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}\times 20=19x^{2}+38x+19
Use the distributive property to multiply x^{2}+2x+1 by 19.
x^{2}\times 20-19x^{2}=38x+19
Subtract 19x^{2} from both sides.
x^{2}=38x+19
Combine x^{2}\times 20 and -19x^{2} to get x^{2}.
x^{2}-38x=19
Subtract 38x from both sides.
x^{2}-38x+\left(-19\right)^{2}=19+\left(-19\right)^{2}
Divide -38, the coefficient of the x term, by 2 to get -19. Then add the square of -19 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-38x+361=19+361
Square -19.
x^{2}-38x+361=380
Add 19 to 361.
\left(x-19\right)^{2}=380
Factor x^{2}-38x+361. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-19\right)^{2}}=\sqrt{380}
Take the square root of both sides of the equation.
x-19=2\sqrt{95} x-19=-2\sqrt{95}
Simplify.
x=2\sqrt{95}+19 x=19-2\sqrt{95}
Add 19 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}