Solve for x
x = \frac{14}{13} = 1\frac{1}{13} \approx 1.076923077
Graph
Share
Copied to clipboard
2.4-x=0.1\left(3x+10\right)
Variable x cannot be equal to -\frac{10}{3} since division by zero is not defined. Multiply both sides of the equation by 3x+10.
2.4-x=0.3x+1
Use the distributive property to multiply 0.1 by 3x+10.
2.4-x-0.3x=1
Subtract 0.3x from both sides.
2.4-1.3x=1
Combine -x and -0.3x to get -1.3x.
-1.3x=1-2.4
Subtract 2.4 from both sides.
-1.3x=-1.4
Subtract 2.4 from 1 to get -1.4.
x=\frac{-1.4}{-1.3}
Divide both sides by -1.3.
x=\frac{-14}{-13}
Expand \frac{-1.4}{-1.3} by multiplying both numerator and the denominator by 10.
x=\frac{14}{13}
Fraction \frac{-14}{-13} can be simplified to \frac{14}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}