Solve for x
x=y-34
y\neq -2
Solve for y
y=x+34
x\neq -36
Graph
Share
Copied to clipboard
2y+4=2\left(x+36\right)
Variable x cannot be equal to -36 since division by zero is not defined. Multiply both sides of the equation by x+36.
2y+4=2x+72
Use the distributive property to multiply 2 by x+36.
2x+72=2y+4
Swap sides so that all variable terms are on the left hand side.
2x=2y+4-72
Subtract 72 from both sides.
2x=2y-68
Subtract 72 from 4 to get -68.
\frac{2x}{2}=\frac{2y-68}{2}
Divide both sides by 2.
x=\frac{2y-68}{2}
Dividing by 2 undoes the multiplication by 2.
x=y-34
Divide -68+2y by 2.
x=y-34\text{, }x\neq -36
Variable x cannot be equal to -36.
2y+4=2\left(x+36\right)
Multiply both sides of the equation by x+36.
2y+4=2x+72
Use the distributive property to multiply 2 by x+36.
2y=2x+72-4
Subtract 4 from both sides.
2y=2x+68
Subtract 4 from 72 to get 68.
\frac{2y}{2}=\frac{2x+68}{2}
Divide both sides by 2.
y=\frac{2x+68}{2}
Dividing by 2 undoes the multiplication by 2.
y=x+34
Divide 68+2x by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}