Solve for y
y=-1.5
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 2 y + 1 } { 0.6 } = 10 - \frac { 1 - 2 y } { 0.3 }
Share
Copied to clipboard
\frac{2y}{0.6}+\frac{1}{0.6}=10-\frac{1-2y}{0.3}
Divide each term of 2y+1 by 0.6 to get \frac{2y}{0.6}+\frac{1}{0.6}.
\frac{10}{3}y+\frac{1}{0.6}=10-\frac{1-2y}{0.3}
Divide 2y by 0.6 to get \frac{10}{3}y.
\frac{10}{3}y+\frac{10}{6}=10-\frac{1-2y}{0.3}
Expand \frac{1}{0.6} by multiplying both numerator and the denominator by 10.
\frac{10}{3}y+\frac{5}{3}=10-\frac{1-2y}{0.3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{3}y+\frac{5}{3}=10-\left(\frac{1}{0.3}+\frac{-2y}{0.3}\right)
Divide each term of 1-2y by 0.3 to get \frac{1}{0.3}+\frac{-2y}{0.3}.
\frac{10}{3}y+\frac{5}{3}=10-\left(\frac{10}{3}+\frac{-2y}{0.3}\right)
Expand \frac{1}{0.3} by multiplying both numerator and the denominator by 10.
\frac{10}{3}y+\frac{5}{3}=10-\left(\frac{10}{3}-\frac{20}{3}y\right)
Divide -2y by 0.3 to get -\frac{20}{3}y.
\frac{10}{3}y+\frac{5}{3}=10-\frac{10}{3}-\left(-\frac{20}{3}y\right)
To find the opposite of \frac{10}{3}-\frac{20}{3}y, find the opposite of each term.
\frac{10}{3}y+\frac{5}{3}=10-\frac{10}{3}+\frac{20}{3}y
The opposite of -\frac{20}{3}y is \frac{20}{3}y.
\frac{10}{3}y+\frac{5}{3}=\frac{30}{3}-\frac{10}{3}+\frac{20}{3}y
Convert 10 to fraction \frac{30}{3}.
\frac{10}{3}y+\frac{5}{3}=\frac{30-10}{3}+\frac{20}{3}y
Since \frac{30}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}y+\frac{5}{3}=\frac{20}{3}+\frac{20}{3}y
Subtract 10 from 30 to get 20.
\frac{10}{3}y+\frac{5}{3}-\frac{20}{3}y=\frac{20}{3}
Subtract \frac{20}{3}y from both sides.
-\frac{10}{3}y+\frac{5}{3}=\frac{20}{3}
Combine \frac{10}{3}y and -\frac{20}{3}y to get -\frac{10}{3}y.
-\frac{10}{3}y=\frac{20}{3}-\frac{5}{3}
Subtract \frac{5}{3} from both sides.
-\frac{10}{3}y=\frac{20-5}{3}
Since \frac{20}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{3}y=\frac{15}{3}
Subtract 5 from 20 to get 15.
-\frac{10}{3}y=5
Divide 15 by 3 to get 5.
y=\frac{5}{-\frac{10}{3}}
Divide both sides by -\frac{10}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}