Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2xy+2y^{2}\right)\left(28x-14y\right)}{\left(21y^{2}z-42xyz\right)\left(5x^{2}+5xy\right)}
Divide \frac{2xy+2y^{2}}{21y^{2}z-42xyz} by \frac{5x^{2}+5xy}{28x-14y} by multiplying \frac{2xy+2y^{2}}{21y^{2}z-42xyz} by the reciprocal of \frac{5x^{2}+5xy}{28x-14y}.
\frac{2\times 14y\left(x+y\right)\left(2x-y\right)}{5\times 21xyz\left(x+y\right)\left(-2x+y\right)}
Factor the expressions that are not already factored.
\frac{-2\times 14y\left(x+y\right)\left(-2x+y\right)}{5\times 21xyz\left(x+y\right)\left(-2x+y\right)}
Extract the negative sign in 2x-y.
\frac{-2\times 2}{3\times 5xz}
Cancel out 7y\left(x+y\right)\left(-2x+y\right) in both numerator and denominator.
\frac{-4}{15xz}
Expand the expression.
\frac{\left(2xy+2y^{2}\right)\left(28x-14y\right)}{\left(21y^{2}z-42xyz\right)\left(5x^{2}+5xy\right)}
Divide \frac{2xy+2y^{2}}{21y^{2}z-42xyz} by \frac{5x^{2}+5xy}{28x-14y} by multiplying \frac{2xy+2y^{2}}{21y^{2}z-42xyz} by the reciprocal of \frac{5x^{2}+5xy}{28x-14y}.
\frac{2\times 14y\left(x+y\right)\left(2x-y\right)}{5\times 21xyz\left(x+y\right)\left(-2x+y\right)}
Factor the expressions that are not already factored.
\frac{-2\times 14y\left(x+y\right)\left(-2x+y\right)}{5\times 21xyz\left(x+y\right)\left(-2x+y\right)}
Extract the negative sign in 2x-y.
\frac{-2\times 2}{3\times 5xz}
Cancel out 7y\left(x+y\right)\left(-2x+y\right) in both numerator and denominator.
\frac{-4}{15xz}
Expand the expression.