Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{2x-6}{6-4x}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Add 2 and 4 to get 6.
\frac{\frac{2\left(x-3\right)}{2\left(-2x+3\right)}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Factor the expressions that are not already factored in \frac{2x-6}{6-4x}.
\frac{\frac{x-3}{-2x+3}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)}}{\frac{x+3}{2}}
Multiply \frac{x-3}{-2x+3} times \frac{\left(x+3\right)\left(x-2\right)}{12-4x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)\times 2}{\left(-2x+3\right)\left(12-4x\right)\left(x+3\right)}
Divide \frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)} by \frac{x+3}{2} by multiplying \frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)} by the reciprocal of \frac{x+3}{2}.
\frac{2\left(x-3\right)\left(x-2\right)}{\left(-4x+12\right)\left(-2x+3\right)}
Cancel out x+3 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)}{4\left(-2x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-2\left(x-2\right)\left(-x+3\right)}{4\left(-2x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-\left(x-2\right)}{2\left(-2x+3\right)}
Cancel out 2\left(-x+3\right) in both numerator and denominator.
\frac{-x+2}{-4x+6}
Expand the expression.
\frac{\frac{2x-6}{6-4x}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Add 2 and 4 to get 6.
\frac{\frac{2\left(x-3\right)}{2\left(-2x+3\right)}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Factor the expressions that are not already factored in \frac{2x-6}{6-4x}.
\frac{\frac{x-3}{-2x+3}\times \frac{\left(x+3\right)\left(x-2\right)}{12-4x}}{\frac{x+3}{2}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)}}{\frac{x+3}{2}}
Multiply \frac{x-3}{-2x+3} times \frac{\left(x+3\right)\left(x-2\right)}{12-4x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)\times 2}{\left(-2x+3\right)\left(12-4x\right)\left(x+3\right)}
Divide \frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)} by \frac{x+3}{2} by multiplying \frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{\left(-2x+3\right)\left(12-4x\right)} by the reciprocal of \frac{x+3}{2}.
\frac{2\left(x-3\right)\left(x-2\right)}{\left(-4x+12\right)\left(-2x+3\right)}
Cancel out x+3 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)}{4\left(-2x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-2\left(x-2\right)\left(-x+3\right)}{4\left(-2x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-\left(x-2\right)}{2\left(-2x+3\right)}
Cancel out 2\left(-x+3\right) in both numerator and denominator.
\frac{-x+2}{-4x+6}
Expand the expression.